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❖ Cellular senescence, a double-edged sword, initially causes the inhibitory cell-cycle 

arrest, yet further also initiates the cellular adaptation of the senescence-associated 

secretory phenotype (SASP), transforming fibroblasts into tumor progression-

favorable pro-inflammatory cells, and ultimately aiding the therapy resistance.

❖ Aim: unravel the metabolic role of senescence in tumor microenvironment 

heterogeneity by spatial metabolomic characterization of senescent tumors.

❖ Subcutaneous liver carcinoma cell senescent and control tumor metabolomics was 

analyzed by ion mobility time-of-flight spectrometry (timsTOF fleX MALDI-2 imaging) 

data was acquired at 10 μm pixel resolution,100 – 1000 m/z.
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Fig 1. Staining of Ki67, p21, and p53 confirms the senescent

phenotype in Cx-5461 compared to Na2HPO4 control, while

hematoxylin and eosin (H&E) staining demonstrates the

general tissue morphology.
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Fig 2. While H&E does not visually characterize differences

between senescent and control tumors, senescence tracer uptake

spatial distribution shows specific uptake peak regions (in red) by

autoradiography that can be correlated with adjacent tissue
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Fig 3. MALDI-2 imaging of negatively ionized metabolites.

Example overlapping metabolite spatial distribution illustrates the

spatial variability of metabolite distribution and intensity, signifying

control tumor core. Senescent tumors visually present increased

intensity for energy/sugar metabolism and reactive

oxygen/nitrogen species scavenger-related metabolites.

Annotations confirmed with accurate mass, ion mobility and cross

collision section (ccs) value match.
Fructose 1,6-bisph. = D-fructose 1,6-bisphosphate

Fig 5. (left) Volcano plot of one negatively ionized

MALDI-2 imaging slide run of metabolites and lipids

highlights altered omega 3 and 6 fatty acid metabolic

pathways in senescent tumors. Phospholipid remodeling

was observed in line with the previous quantitative

metabolomics findings on cellular composition

modifications upon senescence induction (4).
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Fig 4. Example ion intensity box plots and scatter plots showing

the increased intensity of D-fructose 1,6-bisphosphate and coriolic

acid (13-HODE), and reduced uric acid. Taurine stresses the

importance of spatial visualization alongside overall intensity

estimation.

➢ The tumor microenvironment is highly heterogenous and therefore needs to be studied 

spatially.

➢ We demonstrate how spatial metabolomics aid the elucidation of the metabolomic 

and lipid alterations in response to senescence induction and in the areas of 

senescence tracer localization.

➢ Bioactive lipids, including sphingolipids, oxidized phospholipids, arachidonic acid, lipid 

droplets, and free fatty acids contribute to chronic inflammatory state, regulation and 

amplification of SASP, and cellular membrane remodeling. Hence these are important 

study targets for potential therapeutic interventions and progression monitoring.
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