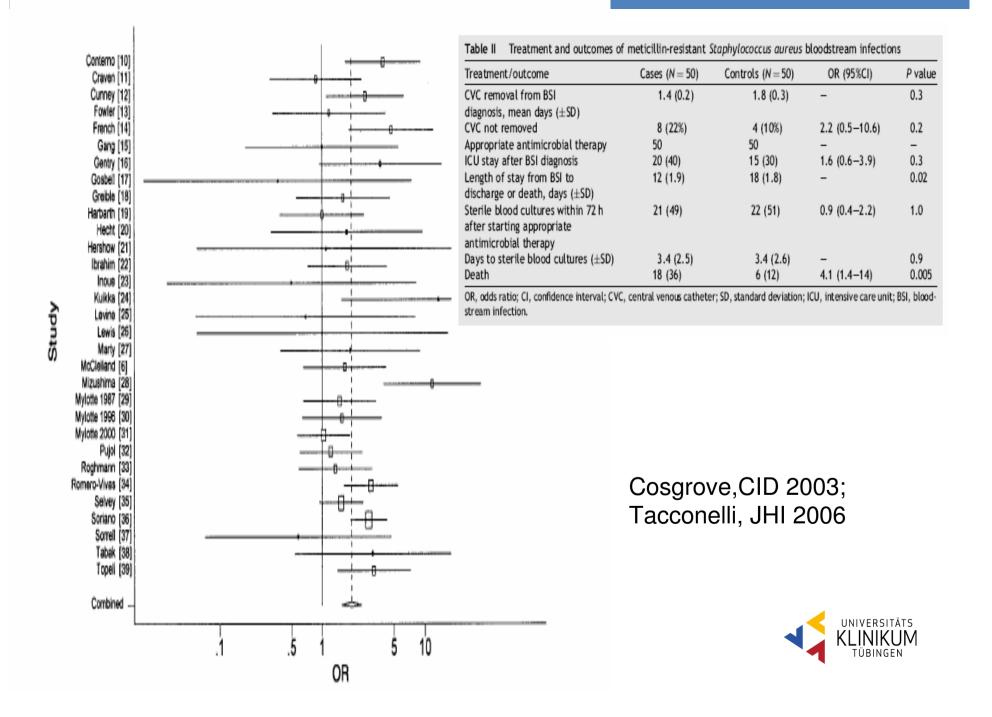
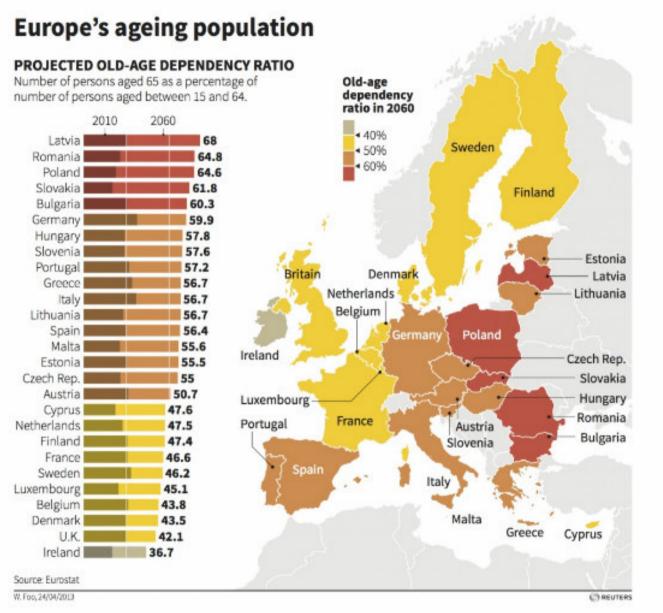
Tübingen, 29.03.2014

THERAPIE MULTIRESISTENTER GRAMPOSITIVER ERREGER

Comprehensive Infectious Disease Center

Evelina Tacconelli


Infektiologie Innere Medizine I Universitätsklinikum Tübingen



Road map

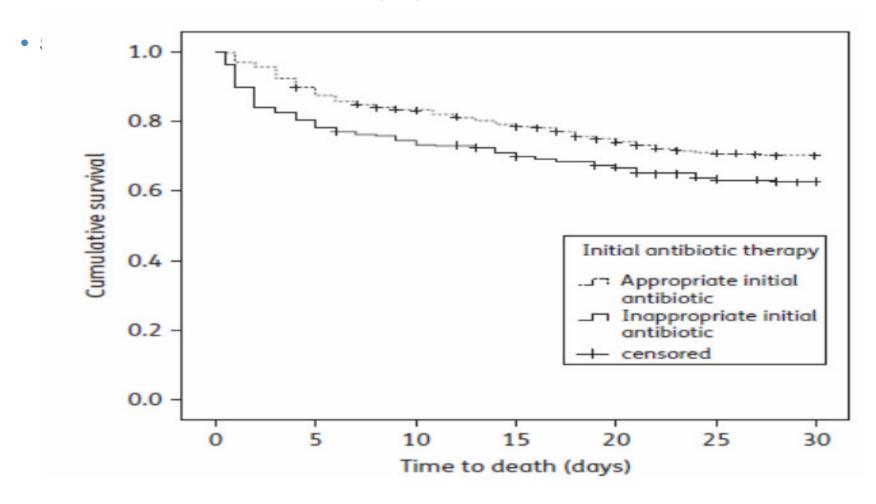
- Which is the real impact on patients mortality of inappropriate empiric and targeted therapy for MDR grampositive?
- How we can reduce related morbidity and mortality?
- Which the major limits and advantages of approved drugs?
- Which are, if any, new developments in the antibiotic pipeline?

Mortality and length of hospitalization (LOS) TIMBER project

Exposure	Adjusted Mortality HR (95% confidence interval)	Excess LoS days (95% confidence interval)	Adjusted End-LoS HR (95% confidence interval)
MSSA BSI (n=898)	1.82 (1.50,2.21)	10.35 (9.44, 11.26)	0.54 (0.49, 0.60)
MRSA BSI (n=167)	2.38 (1.64,3.45)	12.22 (9.89, 14.55)	0.47 (0.37, 0.60)
3GCS-E BSI (n=2094)	1.16 (0.99, 1.36)	4.36 (3.91, 4.81)	0.80 (0.76, 0.85)
3GCR-E BSI (n=366)	1.79 (1.33, 2.41)	7.91 (6.66, 9.16)	0.58 (0.49, 0.67)

ECCMID 2014, oral presentation

Mortality in Germany


Tab.1 Hochrechnung zur Exzess-Letalität wegen Auftreten der jeweils multiresistenten Variante der Erreger statt der jeweils sensiblen Variante bei Blutstrominfektionen im Jahr 2010.

Erreger	MRSA	ESBL E.coli	Summe		
Fälle pro Jahr in Deutschland	3 900	2097	5 997		
Fälle zusätzlicher Letalität	421	256	677		
MRSA = Methicillin-resistente S.aureus					
ESBL E. coli = Extended-Spectrum-Betalactamase- bildende E. coli					

Gastmeier, 2013 Dtsch Med Wochenschr

Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia

Impact of Routine Infectious Diseases Service Consultation on the Evaluation, Management, and Outcomes of *Staphylococcus aureus* Bacteremia

Variable	Before routine consultation (n = 134)	During routine consultation (n = 100)	p
infectious diseases consultation	71 (53)	90 (90)	<.001
Time to consultation, median days (ICR)	3 (1-5)	2 (1-3)	.005
Duration of patient follow-up, median days (IOR)	60 (31-81)	54 (35-71)	.19"

Table 4. Evaluation and classification of Staphylococcus aureus bacteremia by time period.

Jenkins, CID 2008

Rapid testing for methicillin-resistant Staphylococcus aureus: implications for antimicrobial stewardship

- 4 companies offer products for testing
 - sensitivity (91-100%)
 - specificity (95-100%)
- There is limited published evidence on the impact of any rapid MRSA assay on patient-level outcome and costeffectiveness measures.
- Currently available rapid MRSA assays differ in specificity, sensitivity, cost, approved applications, and laboratory turnaround time, and published data are limited.

Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States

Table 5. Number and Percentage of Invasive Methicillin-Resistant *Staphylococcus aureus* Infections by Clinical Condition and Epidemiologic Classification, Active Bacterial Core Surveillance, United States, July 2004-December 2005^a

	Health Care–Associated, No. (%)			
Condition ^b	Community- Associated (n = 1226)	l Community- Onset (n = 5191)	Hospital- Onset (n = 2375)	Total, No. (N = 8792) ^c
Bacteremia	798 (65.1)	4019 (77.4) ^e	1794 (75.5) ^e	6611
Pneumonia	172 (14.0)	616 (11.9) ^d	383 (16.1)	1171
Cellulitis	278 (22.7)	456 (8.8) ^e	114 (4.8) ^e	848
Osteomyelitis	99 (8.1)	415 (8.0)	142 (6.0) ^d	656
Endocarditis	155 (12.6)	341 (6.6) ^e	60 (2.5) ^d	556
Septic shock	46 (3.8)	233 (4.5)	99 (4.2)	378

^aEpidemiologic classification of disease consisted of health care–associated (either hospital-onset cases with a culture collected >48 h after hospital admission or community-onset cases with health care risk factors but a culture collected ≤48 h after hospital admission) and community-associated cases (those with no health care risk factors).
^bCases could have ≥1 clinical syndrome.

^COf 8987 observed cases with invasive methicillin-resistant *Staphylococcus aureus*, 114 (1.3%) could not be classi-, fied and 81 had missing condition.

 $^{d}P < .05.$

 $^{6}P < .01$; all comparisons use community-associated as the referent category.

MRSA BSI at hospital admission

Table 3.. Two logistic regression analyses of risk factors associated withhealthcare-associated MRSA bacteraemia within 24 h of hospitalization, including(first model) and excluding (second model) a history of previous MRSA infection or colonization

Variables	OR	95%CI	P value
First model			
previous MRSA infection or colonization	17.04	4.98-58.27	<0.001
cellulitis at hospital admission	4.27	1.52-11.94	0.006
presence of a central venous catheter	3.30	1.71-6.38	<0.001
skin ulcers at hospital admission	3.12	1.37-7.11	0.007
Second model			
presence of a central venous catheter	3.24	1.76-5.97	<0.001
hospitalization in the previous 6 months	2.01	1.11-3.65	0.02
quinolone therapy in the previous 30 days	1.99	1.07-3.69	0.02
diabetes mellitus	1.84	1.05-3.22	0.03

Tacconelli E, JAC, 2004

VRE positive patients at hospital admission

Table 3. Risk index score for recovery of vancomycin-resistant enterococci at hospital admission, by associated risk factor.

Risk factor	Point value
Previous recovery of MRSA ^a	4
Long-term hemodialysis	3
Transfer from LTCF or hospital	3
Exposure to ≥2 antibiotics ^b	3
Previous hospitalization ^a	3
Age >60 years	2

Risk factors for hospital-acquired MRSA infections

Table 2 Score for risk factors influencing antibiotic strategy according to the PEG recommendation

Risk factor	Points
Age >65 years	I
Preexisting structural lung disease	2
Recent antibiotic therapy	2
Late onset >4 days in hospital	3
Severe respiratory insufficiency with/without mechanical ventilation	3
Extrapulmonary organ failure	4

Abbreviation: PEG, Paul-Ehrlich-Gesellschaft.

IDSA Guidelines 2011 BSI

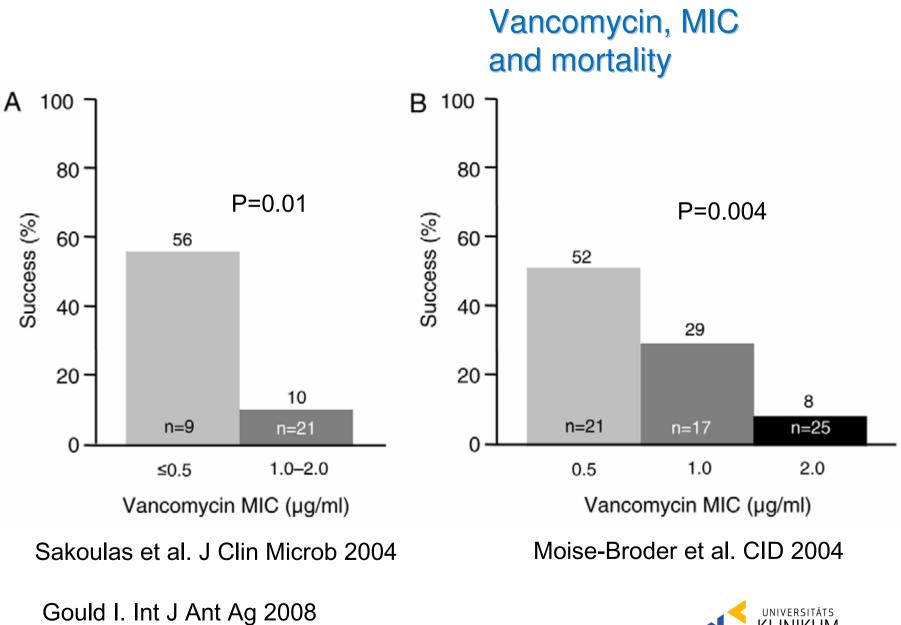
Bacteremia and infective endocarditis					
Bacteremia	Vancomycin	15–20 mg/kg/dose IV every 8–12 h	15 mg/kg/dose IV every 6 h	All	The addition of gentamicin (All) or rifampin (Al) to vancomycin is not routinely recommended.
	Daptomycin	6 mg/kg/dose IV QD	6–10 mg/kg/dose IV QD	AI/CIII	For adult patients, some experts recommend higher dosages of 8–10 mg/kg/dose IV QD (BIII). Pregnancy cate- gory B.

Liu, CID 2011

The pharmacokinetics and pharmacodynamics of vancomycin in clinical practice: evidence and uncertainties

S. J. Vandecasteele¹, A. S. De Vriese¹ and E. Tacconelli^{2*}

Table 1. Proposed vancomycin dose as a function of kidneyfunction, administered as a continuous infusion or in anintermittent dosing regimen; the maximal infusion rate is 15 mg/min under all circumstances


Vancomycin continuous infusion schedule Loading dose: 15 mg/kg in all patients

Maintenance dose: infusion rate (mg/24 h) = 30 mg/kg/24 h OR infusion rate (mg/24 h) = $[0.029 \times CL_{CR} (mL/min) + 0.94] \times target$ plateau level × 24 with target plateau level of 22.5 mg/L. Vancomycin intermittent dosing schedule Loading dose: 25 mg/kg in all patients Maintenance dose [CKD stage, $CL_{CR} (mL/min/1.73 m^2)$, vancomycin dose]: 0, >90, 15-20 mg/kg/12 h 2, 60-89, 20-30 mg/kg/24 h 3A, 45-59, 15-20 mg/kg/24 h 3B, 30-44, 10-15 mg/kg/24 h 4, 15-29, 7-10 mg/kg/24 h

5, <15, 10 mg/kg/48 h

Vancomycin haemodialysis schedule: http://www.azbrugge.be/ VancomycinDoseCalculator. CKD, chronic kidney disease.

MRSA BSI UK online survey

108 respondents

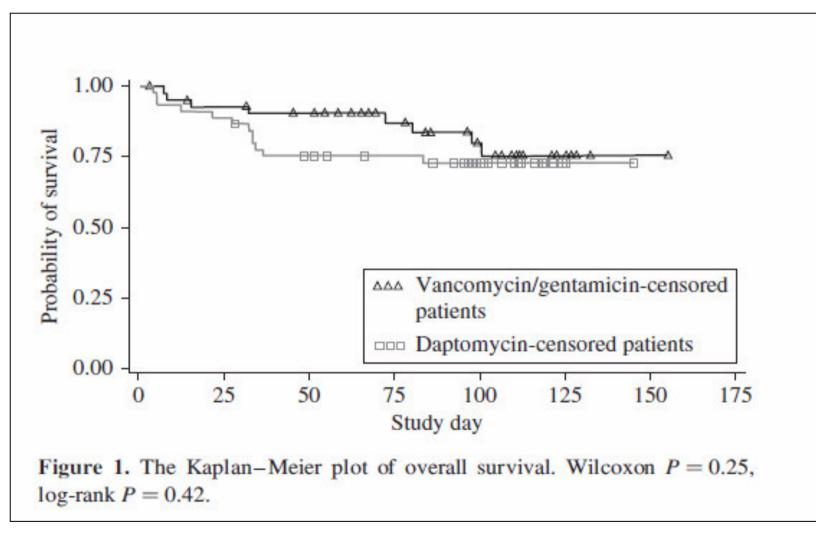

- 42% vancomycin alone (removable-focus infections)
- 49% plus RFD (cardiac /
 - orthopaedic origin)
- 69% linezolid as a secondline agent
- 19% daptomycin

Table 1. Percentage of positive responses to choice of antimicrobial
based on vancomycin MIC (mg/L)

	MIC (mg/L)			
Action	1	2	4	>4
Continue unchanged	83.3	50	0	0
Add in rifampicin	88.9	61.1	25	2.8
Add in an aminoglycoside	50	66.7	33	16.7
Change to daptomycin	25	18.8	50	81.3
Change to linezolid	29	38.2	76.5	91.2
Change to tigecycline	75	25	25	50

Daptomycin vs vancomycin + gentamicin in MRSA bacteraemia and right-side endocarditis

Susan, JAC 2008

Criticisms

- Pre-specified subset analysis rather than a prospective, blinded study.
- Patients with renal failure and those with prosthetic devices or long-term indwelling venous catheters that could not be removed were to be excluded.
- Timing of surgical intervention that might have impacted outcomes was not standardized.
- The number of patients with left-sided endocarditis due to MRSA was small, and there were no treatment successes in this group.

Medical Devices

Home Food Drugs

Radiation-Emitting Products Vaccines, Blood & Biologics

A to Z Index | Follow FDA | FDA Voice

Cosmetics

Tobac

Animal & Veterinary

Archived Content

The content on this page is provided for reference purposes only. This content has not been altered or updated since it was archived.

Drugs

O Home O Drugs O Drug Safety and Availability O Postmarket Drug Safety Information for Patients and Providers

Drug Safety and Availability

Postmarket Drug Safety Information for Patients and Providers

Drug Safety Information for Healthcare Professionals

Healthcare Professional Sheets

Public Health Advisories (Drugs)

Information for Healthcare Professionals: Linezolid (marketed as Zyvox)

FDA ALERT [3/16/2007]: FDA is issuing this alert to advise you of new emerging safety concerns about Zyvox (linezolid) from a recent clinical study. This open-label, randomized trial compared linezolid to vancomycin, oxacillin, or dicloxacillin (comparator antibiotics) in the treatment of seriously ill patients with intravascular catheter-related bloodstream infections including those with catheter-site infections. In this study, patients treated with linezolid had a higher chance of death than did patients treated with any comparator antibiotic, and the chance of death was related to the type of organism causing the infection. Patients with Gram positive infections had no difference in mortality according to their antibiotic treatment. In contrast, mortality was higher in patients treated with linezolid who were infected with Gram negative organisms alone, with both Gram positive and Gram negative organisms, or who had no infection when they entered the study.

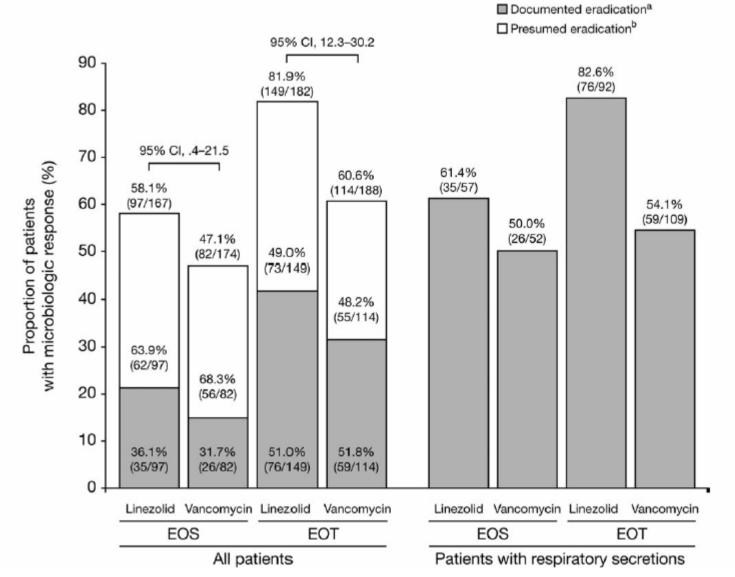
Linezolid is not approved for the treatment of catheter-related bloodstream infections, catheter-site infections, or for the treatment of infections caused by Gram negative bacteria. If infection with Gram negative bacteria is known or suspected, appropriate therapy should be started immediately. FDA is currently evaluating the new study along with other information about linezolid.

CVC-related infections Linezolid, phase 3

Table 3. Microbiologic outcome at test of cure 1-2 weeks after treatment.

Population	Linezolid group	Control group	95% CI	Р
Modified intent-to-treat group	186/212 (87.7)	184/210 (87.6)	-6.2 to 6.4	
MME group				
Complicated SSSI (MME-1)	146/163 (89.6)	134/149 (89.9)	-7.1 to 6.4	.9161
Staphylococcus aureus	75/87 (86.2)	58/68 (85.3)	-10.2 to 12.0	
Methicillin-resistant S. aureus	42/48 (87.5)	34/39 (87.2)	-13.7 to 14.4	
Bloodstream infection (ME-2)	82/95 (86.3)	67/74 (90.5)	-13.8 to 5.4	.3989
S. aureus	46/56 (82.1)	35/42 (83.3)	-16.3 to 13.9	
Methicillin-resistant S. aureus	21/26 (80.8)	18/21 (85.7)	-26.2 to 16.4	

NOTE. Data are no. (%) of successes or no. (%) of patients assessed, unless otherwise indicated. Percentages were based on number of patients assessed and excluded patients with indeterminate or missing outcomes. ME, microbiologically evaluable; MME, modified microbiologically evaluable; SSSI, skin and skinstructure infection.



Wilcox, CID 2009

IDSA Guidelines 2011 HAP

Antibiotic	Adult	Evidence Grade
Vancomycin	15-20 mg/kg IV Q8-12	All
Linezolid	600 mg PO/ IV BID	All
Clindamycin	600 mg PO/IV TID	BIII

Wunderink, CID 2012

Criticisms

- Unequal distribution of medical comorbidities
- Clinical cure was a subjective outcome ("resolution of clinical signs and symptoms of pneumonia compared with baseline, improvement or lack of progression in chest imaging, and no requirement for additional antibacterial treatment")
- Majority of HAP are not diagnosed
- Lack of loading dose for vancomycin

HAP Linezolid versus Vancomycin

Hospital-Acquired Pneumonia: Linezolid vs. Vancomycin: Mortality*

G roup by	Study name	St	atistics for	each study		Mortal	ty / Total		R	5k difference and 95%	CI
Study Design		Risk difference	Lower limit	Up per limit	p-Value	Linezolid	Van comy ci n				
Randomized Double-billid	Rubinstein E 2001	-0.077	-0.157	0.004	0.063	36 / 203	49 / 193		- I ·		- I
Randomized Double-blind	W underlink R 2003	-0.003	-0.066	0.060	0.935	64 / 321	61/302			_ + _	
Randomized Double-billind	Jaksic B 2006	-0.020	-0.060	0.019	0.310	17/304	23/301				
Randomized Double-billind	Lin D 2008	0.042	-0.029	0.113	0.243	5/71	2/71			+	
Randomized Double-blind	Wunderink R 2012	-0.013	-0.055	0.029	0.549	94 / 597	100 / 587				
Randomized Double-billind		-0.013	-0.040	0.014	0.342	216 / 1496	235 / 1454			-	
Randomized Open-label	Stevens D 2002	0.033	-0.035	0.101	0.337	44/240	33/220				
Randomized Open-abel	Kaplan S 2003	0.031	-0.015	0.077	0.189	13/215	3 / 101			∔ਛ⊷	
Randomized Open-label	Kohno S 2007	0.003	-0.114	0.119	0.963	14/100	7 / 51				
Randomized Open-abel	Wunderlink R 2008	-0.028	-0.108	0.053	0.498	4 / 75	6 / 74			_	
Randomized Open-label		0.019	-0.014	0.052	0.253	75/630	49/446			-	
Overal		-0.000	-0.021	0.021	0.992	291 / 2126	284 / 1900			\$	
								-0.50	-0.25	0.00	0.25

Favors Linezolid Favors Vancomycin

0.50

Kalil, BMJ 2013

HAP Linezolid versus Vancomycin

(a) Hospital-Acquired Pneumonia: Linezolid vs. Vancomycin: Clinical Response*

Group by	Study name	Stat	tistics for (each stud	у	Mort	tality / Total		Risk di	fference an	d 95% Cl	
Study Design		Risk difference	Lower limit	Upper limit	p-Value	Linezolid	Vancomycin					
Randomized Double-blind	Rubinstein E 2001	0.029	-0.064	0.121	0.548	71/203	62 / 193	1		- +- -	-	
Randomized Double-blind	Wunderink R 2003	-0.012	-0.088	0.063	0.747	114/321	111/302			-		
Randomized Double-blind	Jaksic B 2006	0.019	-0.016	0.055	0.288	19/304	13 / 301			_ ₩		
Randomized Double-blind	Lin D 2008	0.014	-0.130	0.158	0.848	19/71	18/71		-		-	
Randomized Double-blind	Wunderink R 2012	0.021	-0.019	0.062	0.306	95 / 597	81 / 587			_ - ₽-		
Randomized Double-blind		0.017	-0.007	0.041	0.159	318 / 1496	285 / 1454			•		
Randomized Open-label	Stevens D 2002	0.013	-0.221	0.247	0.914	20/39	16/32		I—	<u>`</u> _		
Randomized Open-label	Kaplan S 2003	-0.057	-0.121	0.007	0.081	9/215	10/101		-	╼		
Randomized Open-label	Kohno S 2007	-0.008	-0.115	0.100	0.889	11/100	6/51		· · ·		-	
Randomized Open-label	Wunderink R 2008	0.052	-0.062	0.165	0.372	13/75	9/74			_ + •	-	
Randomized Open-label		-0.024	-0.073	0.024	0.327	53 / 429	41 / 258			-		
Overall		0.009	-0.012	0.031	0.409	371 / 1925	326 / 1712			\$		
								-0.50	-0.25	0.00	0.25	0.50
								Favo	rs Vancomycin	F	avors Linezolid	

*Intention-to-Treat Population. Z=0.826; P=0.409; Heterogeneity: Q=5.878; P=0.661; I2=0%

Kalil, BMJ 2013

HAP Linezolid versus Vancomycin

(b) Hospital-Acquir	ed Pneumonia: Linezolid vs. Vancomycin: MRSA* Er	radication
Group by Study Design maha, Nebraska, USA nfection Control epartment, Brigham and Randomized Dol. Randomized Dol. Randomized Dolassachusetts, USA Randomized Op Department of Biostatistics, Randomized Op Nebraska, Randomized Op Maha, Nebraska, USA Randomized Op Nebraska, USA Randomized Op Overall Difference to r Andre C Kalil; kali@unmc.edu	renal failure, thrombocytopenia and drug discontinuation due to adverse events. Our sample size provided 99.9% statistical power to detect differences between drugs regarding clinical response and mortality. Conclusions: Linezolid and vancomycin have similar efficacy and safety profiles. The high statistical power and the near-zero efficacy difference between both antibiotics demonstrates that no drug is superior for the treatment of hospital-acquired pneumonia.	zolid, new r since which vancol versy Gram- The to re optim: •33 •75 percei s Linezolid

*Methicillin-Resistant Staphylococcus aureus Microbiological Evaluable/Per-Protocol Population. Z=1.199; P=0.230; Heterogeneity: Q=4.146; P=0.657; I2=0%

Kalil, BMJ 2013

IDSA Guidelines 2011 SSI

Antibiotic	Adult	Evidence Grade
Vancomycin	15-20 mg/kg IV Q8-12	AI
Linezolid	600 mg PO/ IV BID	AI
Daptomycin	4 mg/kg IV QD	AI
Telavancin	10 mg/kg IV QD	AI
Clindamycin	600 mg PO/IV Q8	AIII

Doxicline Cotrimoxazole

Tacconelli CID 2013

Tygecicline

- Approved for SSI and abdominal infections
- Advantage of coverage of gram negative
- Clinical failures and development of resistance under therapy have been reported
- Superinfections with pathogen inherently resistant to tygecicline are a matter of great concern
- Primary BSI, UTI and VAP present a challenge for the use of tigecycline

Tygecicline

Treatment success by population Clinical mITT 6053 Clinically assessable 5642 Microbiological mITT 2704 Microbiologically assessable 2354 Eradication of pathogen	Odds ratio (95% CI)	Heterogeneity (I², p value)
Clinically assessable 5642 Her Microbiological mITT 2704 Her Microbiologically assessable 2354 Her Eradication of pathogen Escherichia coli 1033 Her Klebsiella pneumoniae 252 Her MRSA 236 Her MSSA 365 Her Bacteroides spp 336		
Microbiological mITT 2704 Microbiologically assessable 2354 Eradication of pathogen Escherichia coli 1033 Klebsiella pneumoniae 252 MRSA 236 MSSA 365 Bacteroides spp 336	0-82 (0-73-0-93)	0%, 0.58
Microbiologically assessable 2354	0.87 (0.74-1.02)	15%, 0.29
Eradication of pathogen Escherichia coli 1033 + + + + + + Klebsiella pneumoniae 252 + + + + + + MRSA 236 + + + + + MSSA 365 + + + + + + Bacteroides spp 336 + + + + + +	0.91 (0.74-1.12)	0%, 0.61
Escherichia coli 1033 Handrei 1	0-97 (0-73-1-28)	16%, 0-30
Klebsiella pneumoniae 252 MRSA 236 MSSA 365 Bacteroides spp 336		
MRSA 236	0.93 (0.66-1.31)	0%, 0.71
MSSA 365	0.53 (0.26-1.08)	0%, 0.52
Bacteroides spp 336	0-80 (0-33-1-97)	33%, 0.19
	0.64 (0.34-1.19)	0%, 0.84
Haemophilius influenzae 54	0.84 (0.51-1.38)	0%, 0.75
	0.60 (0.10-3.59)	14%, 0.31
Enterococcus spp 171	1.96 (0.93-4.12)	0%, 0.70
Streptococcus pneumoniae 213	1.59 (0.57-4.46)	0%, 0.98
0.14 0.36 1.00 2.72 7.39	-24	

Figure 4: Comparative effectiveness of tigecycline versus comparator antibiotics

Vertical line indicates no difference between the two treatment groups. Pooled odds ratios were calculated from random-effects models with the Mantel-Haenszel method. mITT=modified intention to treat. MRSA=meticillin-resistant Staphylococcus aureus. MSSA=meticillin-sensitive Staphylococcus aureus.

All cause mortality was higher in the tygecicline group than in the comparator, but the difference was not statistically significant (1.28, 0.97 – 1,69)

Tasina, LID 2013

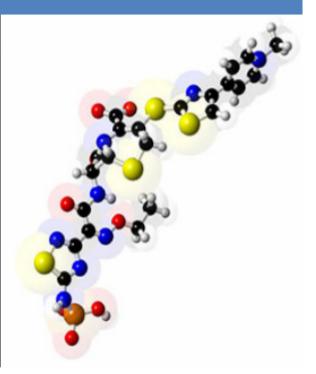
Table 7. Microbiologic eradication at test of cure, by grampositive pathogens: pooled analysis (studies 0017 and 0018).

	Proportion of patients (%)						
Microbiologic eradication	Telavancin treatment arm	Vancomycin treatment arm					
Total Staphylococcus aureus	473/527 (89.8)	468/536 (87.3)					
MRSA	250/278 (89.9)	257/301 (85.4)					
MSSA	161/181 (89.0)	157/176 (89.2)					
Enterococcus faecalis	25/27 (92.6)	31/34 (91.2)					
Streptococcus species							
Streptococcus pyogenes	21/23 (91.3)	23/25 (92.0)					
Streptococcus agalactiae	17/19 (89.5)	18/19 (94.7)					
Streptococcus anginosus	11/11 (100.0)	8/8 (100.0)					

Telavancin vs vancomycin

NOTE. MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-susceptible Staphylococcus aureus.

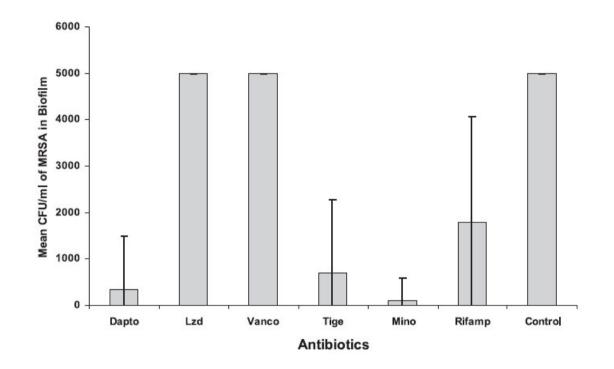
Table 5. Patients cured at test of cure in studies 0017 and 0018: pooled analysis.


	Proportion of	f patients (%)		
Population	Telavancin treatment arm	Vancomycin treatment arm	Difference in cure rates (95% CI for the difference) ^a	
Study 0017				
Clinically evaluable	304/346 (87.9)	302/349 (86.5)	1.3 (-3.6 to 6.3)	
All treated	323/426 (75.8)	321/429 (74.8)	1.0 (-4.8 to 6.8)	
Study 0018				
Clinically evaluable	354/399 (88.7)	346/395 (87.6)	1.1 (-3.4 to 5.6)	
All treated	387/502 (77.1)	376/510 (73.7)	3.4 (-1.9 to 8.7)	
Pooled analysis (studies 0017 and 0018)				
Clinically evaluable	658/745 (88.3)	648/744 (87.1)	1.2 (-2.1 to 4.6)	
All treated	710/928 (76.5)	697/939 (74.2)	2.3 (-1.6 to 6.2)	

NOTE. All percentages were calculated relative to the number of nonmissing observations.

^a For the difference between the telavancin treatment arm and the vancomycin treatment arm for the proportion of patients who were cured.

The high affinity of ceftaroline for penicillin-binding proteins is responsible for the potent activity observed against clinically relevant pathogens. With respect to the treatment of CABP, the activity of ceftaroline against pathogens such as S. pneumoniae, S. aureus, Haemophilus influenzae and Moraxella catarrhalis demonstrates coverage across a broad range of pathogens typically encountered in clinical practice. Ceftaroline is also very active against common pathogens seen in ABSSSIs such as S. aureus (methicillin-susceptible S. aureus and methicillin-resistant S. aureus) and Streptococcus pyogenes.

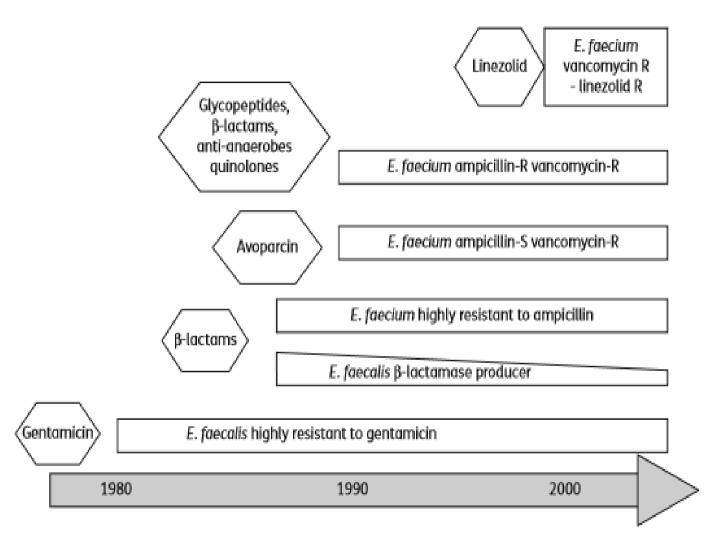


Abstract

Data regarding ceftaroline use for meticillin-resistant Staphylococcus aureus bacteraemia (MRSAB) are lacking. Here we review the outcomes of 31 patients with MRSAB treated with ceftaroline, including 9 patients with endocarditis. Clinical success was observed in 23 patients (74.2%). Adverse events associated with prolonged therapy were rare and included eosinophilic pneumonia, rash and diarrhoea. We conclude that ceftaroline can be used for MRSAB.

Daptomycin, Linezolid, and Tigecycline against Catheter-Related MRSA Bacteremic Isolates Embedded in Biofilm

Addition of Rifampin to Vancomycin for Methicillin-Resistant Staphylococcus aureus Infections: What Is the Evidence?


Simon Tremblay, Tim TY Lau, Mary HH Ensom

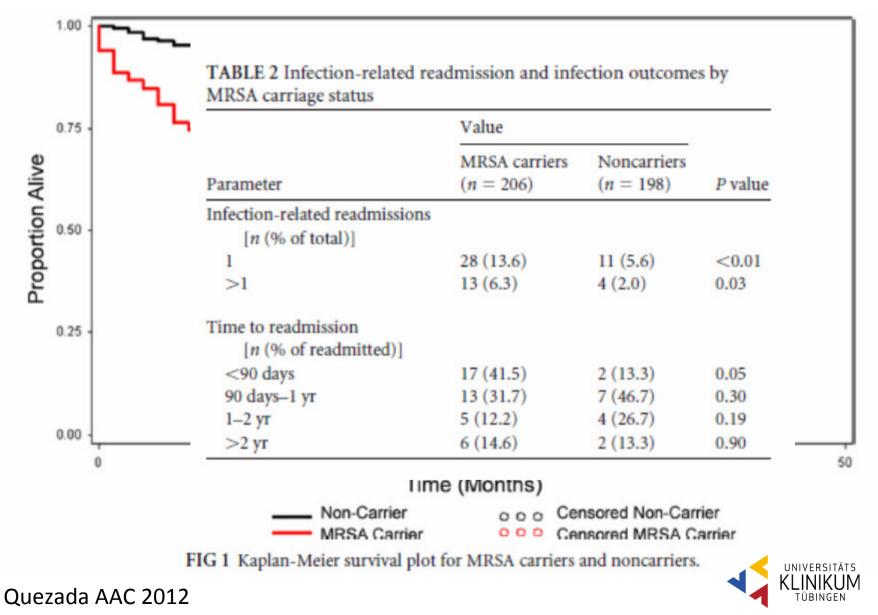
CONCLUSIONS: Limited evidence exists to support the adjunctive use of rifampin to treat MRSA infections. The combination may increase drug interactions, adverse effects, and rifampin resistance. Further studies are needed to define the role of rifampin adjunct therapy.

Ann Pharmacother 2013;47:1045-54.

Published Online, 28 May 2013, theannals.com, doi: 10.1345/aph.1R726

Cattair, JAC 2013

New drugs for MRSA


Name	Mode of Action	Conditions	Route(s)	Status
		exposed to inhalation anthrax and in May 2007)		
EDP-420	Inhibition of bacterial protein synthesis by targeting 50S ribosomal subunit	CA-pneumonia	Oral	Phase II
NXL 103 (XRP 2868)	Inhibition of bacterial protein synthesis by targeting ribosomal subunits (synergistic effect)	Acute bacterial skin and skin structure infections, CA- pneumonia	Oral	Phase II
Delafloxacin	Inhibition of bacterial Gyrase	Acute bacterial skin and skin structure infections, Complicated skin and skin structure infections	Oral, IV	Phase II
LBM-415	Inhibition of bacterial protein synthesis by inhibiting peptide deformylase	CA-respiratory tract infections	Oral	Phase I (development terminated)
GSK1322322	Inhibition of bacterial protein synthesis by inhibiting peptide deformylase	Bacterial skin and skin structure infections and hospitalized CA- pneumonia	Oral	Phase II
Locilex™ (MSI-78 topical cream)	Formation of an amphipathic α- helical peptide on membranes that induces pore or changes membrane permeability	Diabetic foot infections caused by drug- sensitive and –resistant bacteria including MRSA, VRE, extended-spectrum β- lactamase producing bacteria	Topical	Phase III
OligoG CF-5/20	Immunomodulating activity	Lung infections in cystic fibrosis	Inhalation	Phase I
F598	Inhibition of virulence by targeting the PNAG carbohydrate of the bacterial capsule	S. aureus and other clinically relevant bacteria	IV	Phase I

Name	Mode of Action	Conditions	Route(s)	Status
		exposed to inhalation anthrax and in May 2007)		
EDP-420	Inhibition of bacterial protein synthesis by targeting 50S ribosomal subunit	CA-pneumonia	Oral	Phase II
NXL 103 (XRP 2868)	Inhibition of bacterial protein synthesis by targeting ribosomal subunits (synergistic effect)	Acute bacterial skin and skin structure infections, CA- pneumonia	Oral	Phase II
Delafloxacin	Inhibition of bacterial Gyrase	Acute bacterial skin and skin structure infections, Complicated skin and skin structure infections	Oral, IV	Phase II
LBM-415	Inhibition of bacterial protein synthesis by inhibiting peptide deformylase	CA-respiratory tract infections	Oral	Phase I (developmen terminated)
GSK1322322	Inhibition of bacterial protein synthesis by inhibiting peptide deformylase	Bacterial skin and skin structure infections and hospitalized CA- pneumonia	Oral	Phase II
Locilex™ (MSI-78 topical cream)	Formation of an amphipathic α - helical peptide on membranes that induces pore or changes membrane permeability	Diabetic foot infections caused by drug- sensitive and –resistant bacteria including MRSA, VRE, extended-spectrum β- lactamase producing bacteria	Topical	Phase III
OligoG CF-5/20	Immunomodulating activity	Lung infections in cystic fibrosis	Inhalation	Phase I
F598	Inhibition of virulence by targeting the PNAG carbohydrate of the bacterial capsule	S. aureus and other clinically relevant bacteria	IV	Phase I

Long-Term Risk for Readmission in MRSA+

			Pooled relative	e risk (95% Cl)		
Studies by intervention	All studies	Cardiac studies	Total joint arthroplasty or orthopedic studies	Peer reviewed publications*	Randomized controlled trials	Observational studies
Decolonization studies:						
Gram positive SSIs	0.41 (0.30 to 0.55)†	0.46 (0.32 to 0.67)†	0.32 (0.22 to 0.47)	0.41 (0.30 to 0.55)†	0.63 (0.36 to 1.13)†	0.35 (0.27 to 0.46)
Staphylococcus aureus SSIs	0.39 (0.31 to 0.50)	0.45 (0.34 to 0.58)	0.32 (0.21 to 0.47)	0.39 (0.31 to 0.50)	0.46 (0.29 to 0.73)	0.37 (0.28 to 0.49)
MRSA SSIs	0.30 (0.15 to 0.62)†	0.69 (0.36 to 1.31)	0.16 (0.09 to 0.28)	0.30 (0.15 to 0.62)†	NA†	0.28 (0.12 to 0.62)
MSSA SSIs	0.50 (0.37 to 0.69)	0.46 (0.29 to 0.72)†	0.56 (0.31 to 1.01)	0.50 (0.37 to 0.69)	0.61 (0.30 to 1.25)†	0.43 (0.29 to 0.62)
Glycopeptide prophylaxis studies:	L					
Gram positive SSIs	0.70 (0.47 to 1.04)†	0.76 (0.49 to 1.18)†	0.69 (0.37 to 1.30)	0.62 (0.39 to 0.98)†	1.13 (0.90 to 1.42)	0.35 (0.12 to 1.03)
S aureus SSIs	0.53 (0.24 to 1.16)†	0.52 (0.17 to 1.56)†	0.92 (0.59 to 1.44)	0.41 (0.20 to 0.84)	0.73 (0.33 to 1.63)	0.41 (0.10 to 1.64)
MRSA SSIs	0.40 (0.20 to 0.80)	0.39 (0.15 to 1.03)	0.46 (0.13 to 1.63)†	0.32 (0.14 to 0.73)	0.65 (0.23 to 1.82)	0.22 (0.06 to 0.81) ⁻
MSSA SSIs	1.47 (0.91 to 2.38)	1.32 (0.82 to 2.12)	1.18 (0.65 to 2.13)	0.81 (0.38 to 1.73)	1.01 (0.23 to 4.54)	1.48 (0.84 to 2.60)
Bundle studies:						
Gram positive SSIs	0.41 (0.30 to 0.56)	NA‡	0.44 (0.31 to 0.65)	0.36 (0.24 to 0.53)	NA§	0.41 (0.30 to 0.56)
S aureus SSIs	0.29 (0.19 to 0.42)	NA‡	0.33 (0.21 to 0.52)	0.27 (0.15 to 0.47)	NA§	0.29 (0.19 to 0.42)
MRSA SSIs	0.22 (0.12 to 0.38)	NA‡	0.27 (0.14 to 0.53)	0.19 (0.10 to 0.38)	NA§	0.22 (0.12 to 0.38)
MSSA SSIs	0.45 (0.26 to 0.78)	NA‡	0.42 (0.23 to 0.77)	0.52 (0.27 to 1.01)	NAS	0.45 (0.26 to 0.78)

Shweizer, BMJ 2013

What is already known on this topic

Surgical site infections (SSIs) are potentially preventable adverse events of cardiac and orthopedic operations

SSIs significantly increase hospital length of stay, readmission rates, healthcare costs, and mortality rates

Clinicians and researchers have debated whether nasal decolonization or glycopeptide antibiotic prophylaxis reduce SSIs caused by Gram positive bacteria

What this study adds

Among patients undergoing cardiac or orthopedic surgery:

Nasal decolonization with mupirocin ointment was protective against Gram positive SSIs

Preoperative prophylaxis with anti-methicillin (meticillin) resistant *Staphylococcus aureus* (MRSA) antibiotics when given to all patients was not protective against Gram positive SSIs

A bundle that included nasal decolonization and anti-MRSA prophylaxis for MRSA carriers was significantly protective against Gram positive SSIs

Decolonisation and glycopeptide prophylaxis and SA SSI

Shweizer, BMJ 2013

Household transmission prevention

Table 2. Prevention Strategies for Patients with Recurrent MRSA Skin and Soft-Tissue Infections and for Their Household Members.*

Avoid sharing personal hygiene items (e.g., razors, brushes, and towels)

Apply 2% mupirocin ointment to the anterior nares with a sterile cotton applicator twice a day for 5 days

Apply 4% chlorhexidine gluconate solution with the hands or with a clean washcloth to all body parts, excluding the face, open wounds, and mucous membranes, followed by a thorough rinse with water daily for 5 days⁺

Hand hygiene measures and contact precautions to reduce VRE A systematic review and meta-analysis

	Intervention	group	Control (jroup		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Tota	Events	Tota	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
Bradley 1999	25	131	43	102	62.7%	0.45 [0.30, 0.69]	-	
Lai 2006	19	79	29	80	37.3%	0.66 [0.41, 1.08]		
Total (95% CI)		210		182	100.0%	0.53 [0.39, 0.73]	•	
Total events	44		72					
Heterogeneity: Chi ^z = 1	1.36, df = 1 (P =	0.24); l ^a	²= 26%			۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	 	100
Test for overall effect: .	Z = 3.91 (P < 0.	0001)					sexperimental Favourscontr	

	Physical ba	rriers	Control (jroup		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Bearman 2007	35	257	35	192	28.1%	0.75 [0.49, 1.15]	
Bearman 2010	4	192	1	243	2.2%	5.06 [0.57, 44.92]	
Huskins 2011	316	5434	175	3705	46.0%	1.23 [1.03, 1.47]	•
Slaughter 1996	24	93	21	88	23.7%	1.08 [0.65, 1.80]	
Total (95% CI)		5976		4228	100.0 %	1.07 [0.77, 1.49]	◆
Total events	379		232				
Heterogeneity: Tau² =	= 0.05; Chi ² = 6	6.25, df=	: 3 (P = 0.1	0); I² = 9	52%		0.01 0.1 1 10 100
Test for overall effect:	Z = 0.40 (P =	0.69)				Fav	ours physical barriers Favours control

Tacconelli E, JAC 2014

Conclusions

- Vancomycin is the preferred agent to treat MRSA.
- S.aureus with reduced susceptibility to vancomycin have been reported
- Linezolid and daptomycin has been demonstrated as effective although type of diseases, risk for potential development of resistance, toxicities, and costs must be taken into consideration before its use.
- Tigecycline, telavancin, and ceftaroline are well tolerated but lack the clinical data to support a superior place in treatment over vancomycin.
- Several new agents in various stages of development have also demonstrated MRSA activity.
- Currently, vancomycin remains the gold-standard treatment option for MRSA infections.

