

Metabolic Profiling of Ovarian Cancer Ascites Using high performance liquid chromatography-tandem lon Mobility-High-**Resolution Mass Spectrometry**

Kefan Cheng^{1,2}, Wooyong Kim^{1,2,3}, Jannik Sprengel^{1,2}, Christoph Trautwein^{1,2,3}

¹Core Facility Metabolomics, Medical Faculty University of Tübingen, Germany; ²The M3 Research Center, University of Tübingen, Germany; ³Werner Siemens Imaging Center, University Hospital Tübingen, Germany

Introduction

> Ovarian cancer (OC) is the primary cancer most frequently associated with the abnormal production of peritoneal fluid, called malignant ascites ^[1].

Ascites metabolite coverage with LC-MS and NMR

- > In a previous study by Yang et al. ^[2], NMR-based metabolomics (600 MHz) was applied to identify the differences and correlations between metabolites in ascites from OC patients at different clinical stages.
- 4D-metabolomics approach was applied to the same samples used for NMR before in order to obtain complementary information. Compared to the traditional 3D-metabolomics LC-MS/MS workflow (retention time, m/z and MS/MS), the integration of **ion mobility** as an additional dimension significantly improves compound identification confidence by providing collisional cross section (CCS) values ^[3].
- samples were analyzed using reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), coupled with **Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS)** in parallel accumulation-serial fragmentation (PASEF) scan mode on a Bruker timsTOF pro2 system and MetaboScape work station.

HILIC Condition

LC-MS 34 NMR 11 564

> A Venn diagram showing the overlap of metabolites between two studies using HPLC-IM-HRMS and NMR. Only eleven metabolites in total are congruent between the two platforms.

Metabolic variation across different cancer types and stages

> Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) scores plot comparing ovarian cancer at clinical stages III, IV, and a control group from other cancer types.

> A heatmap of metabolites in ovarian cancer at clinical stages III, IV, and the control. Out of 757 annotated metabolites, 16 significant metabolites (p < 0.05) were identified.

> Multiple ions are accumulated simutaneously in the ion funnel and sequentially transferred and

Metabolomics profiling on different stages of ovarian cancer

- > Orthogonal Partial least squares discriminant analysis (oPLS-DA) scores plot from OC at clinical stage III and IV.
- > Volcano plot of differential expression results of OC at clinical stage III and IV. 96 significant metabolites (p < 0.05) were found out of 760 annotated metabolites.

fragmentated.

- > TIMS Stepping: Multiple TIMS ramps are mearured and merged together in a single final acquisition.
- > MS/MS Stepping: Masses transferred in each step can be fragmented with two customizable collision energies (CEs).

Conclusions

- > Over 700 metabolites and lipids were annotated with high confidence using 4D annotation.
- > 34 metabolites were unique to NMR, while 564 metabolites were unique to LC-MS, showing the high complementarity of both techniques.
- > Metabolomic differences were successfully identified, distinguishing clinical stages of ovarian cancer as well as varying histological types.

> Principal Component Analysis (PCA) scores plot and volcano plot for ovarian cancer, specifically comparing Adenocarcinoma (subtype unknown) and High-Grade Serous Carcinoma (HGSC).

> Out of 755 annotated metabolites, 61 significant metabolites (p < 0.05) were identified.

University of Tübingen M3 Research Center **Core Facility Metabolomics** Otfried-Müller-Str. 37 · 72076 Tübingen· Germany Telefon +49 7071 29-82501 *kefan.cheng@med.uni-tuebingen.de*

Acknowledgements

The authors would like to thank Gyuntae Bae for support BRÚKÉR with data analysis and Bruker Daltonics for the cooperation and their continuous support.

References

(1)) Kipps E, er al., Nat Rev Cancer. 2013;13(4):273–82. (2) Yang et al., Journal of Translational Medicine 2022; 20:581. (3) Pieter V, et al., Analytical Chemistry 2018;90 (19):11643-11650.