500
501
502
503

Address: Otfried-Müller-Straße 10
72076 Tübingen


Founding Director

frontend.sr-only_#{element.icon}: +49 7071 29-82168
Prof. Dr. Julia Skokowa


frontend.sr-only_#{element.icon}: julia.skokowa@med.uni-tuebingen.de


Scientific coordinator

frontend.sr-only_#{element.icon}: +49 7071 29-86013
Dr. Olga Klimenkova


frontend.sr-only_#{element.icon}: Olga.Klimenkova@med.uni-tuebingen.de


AG Skokowa

Portraitfoto

Prof. Dr. Julia Skokowa, PhD

Division of Translational Oncology, Department of Internal Medicine II, Oncology, Hematology, Clinical Immunology and Rheumatology, University Hospital Tübingen

frontend.sr-only_:

Gruppenfoto

About the lab & main translational research directions

The lab of Julia Skokowa is developing gene- and protein-based therapeutics for hematological and oncological diseases. The main translational research directions are:

  • Correction or inactivation of gene mutations causing severe congenital neutropenia using gene editing with CRISPR nucleases: We have developed several CRISPR/Cas gene editing approaches for gene therapy of patients with different forms of severe congenital neutropenia (Nasri et al., 2020, Skokowa et al., 2021). Having successfully finished pre-clinical studies, we plan to initiate clinical trials using these approaches.
  • Using CRISPR nucleases to model diseases: We have established various state-of-the-art methods of experimental disease modeling using CRISPR nucleases by e.g., introducing or correcting gene mutations, activating or inhibiting genes of interest, tagging of endogenous proteins by fluorescent or luminescent markers. We apply the above techniques to primary cells, iPSCs, zebrafish embryos and cell lines (Dannenmann et al., 2020, Nasri et al., 2019, Mir et al., 2020, Morishima et al., 2019).
  • De novo protein-based therapeutics: We are performing computational design of de novo protein-based therapeutics for hematological and oncological diseases (Hernandez Alvarez et al., 2020, Skokowa et al., 2022).

GRT projects

  • CRISPR/Cas9-based gene therapy approaches for severe congenital neutropenia
  • Identification and functional validation of causative variants in patients with genetically unclassified severe congenital neutropenia using NGS-based OMICS followed by disease modeling in iPSCs, primary hematopoietic stem cells and zebrafish
  • Design and development of miniaturized CRISPR nucleases for therapeutic gene targeting
  • Development of therapeutic proteins for hematology and oncology using de novo protein design

GRT expertise

  • Preclinical development of gene therapies for hematological diseases using CRISPR nucleases
  • Engineering of de novo protein-based therapeutics
  • Phenotype-genotype correlation and identification new disease-causing gene mutations in patients with severe chronic neutropenias
  • Mechanisms of hematopoietic differentiation and leukemogenic transformation of hematopoietic stem cells
  • In vitro and in vivo modeling of hematological disorders and leukemia

GRT techniques

  • State-of-the-art gene editing approaches for primary cells, iPSCs, zebrafish and cell lines
  • RNP-, AAV-, and mRNA based delivery of CRISPR nucleases, or HDR templates
  • Tagging of endogenous proteins using CRISPR nucleases
  • Genome-wide off- and on-target analyses of CRISPR nucleases (rhAmpSeq CRISPR Analysis System, GUIDE-Seq (genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases), CAST-Seq (Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells), Nano-OTS (Nanopore off-target sequencing))
  • In vitro and in vivo modeling of hematological disorders and leukemia (primary hematopoietic cells, iPSCs, transgenic animals and fish, PDX-, humanized PDX mouse and fish models)
  • In vivo engraftment of gene-edited hematopoietic stem and progenitor cells
  • Bioinformatic analyses of NGS data for identification of disease-causing and leukemia-associated gene mutations
  • De novo design and functional validation of protein-based therapeutics

Publications

  • Skokowa, J., Hernandez Alvarez, B., Coles, M., Ritter, M., Nasri, M., Haaf, J., Aghaallaei, N., Xu, Y., Mir, P., Krahl, AC., Rogers, KW., Maksymenko, K., Bajoghli, B., Welte, K., Lupas, AN., Müller, P., ElGamacy, M. A topological refactoring design strategy yields highly stable granulopoietic proteins. Nat Commun. 13; 2948 (2022). 
  • Skokowa, J. Circumventing Mutation to Nix Neutropenia. N Engl J Med 384, 1956-1958 (2021).
  • Dannenmann, B., Klimiankou, M., Oswald, B., Solovyeva, A., Mardan, J., Nasri, M., Ritter, M., Zahabi, A., Arreba-Tutusaus, P., Mir, P., Stein, F., Lachmann, N., Moritz, T., Morishima, T., Konantz, M., Lengerke, C., Ripperger, T., Steinemann, D., Erlacher, M., Niemeyer, C., Zeidler, K., Welte, K. & Skokowa, J. hiPSC Model of Stage-Specific Leukemogenesis in Severe Congenital Neutropenia reveals BAALC as a Key Oncogene. Cell Stem Cell 28, 906-922 (2021). 
  • Nasri, M., Ritter, M., Mir, P., Dannenmann, B., Aghaallaei, N., Amend, D., Makaryan, V., Xu, Y., Fletcher, B., Bernhard, R., Steiert, I., Hahnel, K., Berger, J., Koch, I., Sailer, B., Hipp, K., Zeidler, C., Klimiankou, M., Bajoghli, B., Dale, D.C., Welte, K. & Skokowa, J. CRISPR/Cas9-mediated ELANE knockout enables neutrophilic maturation of primary hematopoietic stem and progenitor cells and induced pluripotent stem cells of severe congenital neutropenia patients. Haematologica 105, 598-609 (2020). 
  • Dannenmann, B., Nasri, M., Welte, K., Skokowa, J. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation. Methods Mol Biol 2115, 471-483 (2020).
  • Hernandez Alvarez, B., Skokowa, J., Coles, M., Mir P., Nasri M., Maksymenko K., Weidmann L., Rogers KW., Welte K., Lupas AN., Müller P., ElGamacy M. Design of novel granulopoietic proteins by topological rescaffolding. PLoS Biol. 18, e3000919 (2020).
  • Doll, L., Aghaallaei, N., Dick, A.M., Welte, K., Skokowa, J. & Bajoghli, B. A zebrafish model for HAX1-associated congenital neutropenia. Haematologica (2020).
  • Dannenmann, B., Nasri, M., Welte, K. & Skokowa, J. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation. Methods Mol Biol 2115, 471-483 (2020).
  • Nasri, M., Mir, P., Dannenmann, B., Amend, D., Skroblyn, T., Xu, Y., Schulze-Osthoff, K., Klimiankou, M., Welte, K. & Skokowa, J. Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response. Blood Adv 3, 63-71 (2019).
  • Morishima, T., Krahl, A.C., Nasri, M., Xu, Y., Aghaallaei, N., Findik, B., Klimiankou, M., Ritter, M., Hartmann, M.D., Gloeckner, C.J., Stefanczyk, S., Lindner, C., Oswald, B., Bernhard, R., Hähnel, K., Hermanutz-Klein, U., Ebinger, M., Handgretinger, R., Casadei, N., Welte, K., Andre, M., Müller, P., Bajoghli, B. & Skokowa, J. LMO2 activation by deacetylation is indispensable for hematopoiesis and T-ALL leukemogenesis. Blood 134, 1159-1175 (2019).
  • Klimiankou, M., Klimenkova, O., Uenalan, M., Zeidler, A., Mellor-Heineke, S., Kandabarau, S., Skokowa, J., Zeidler, C. & Welte, K. GM-CSF stimulates granulopoiesis in a congenital neutropenia patient with loss-of-function biallelic heterozygous CSF3R mutations. Blood 126, 1865-1867 (2015).
  • Skokowa, J., Steinemann, D., Katsman-Kuipers, J.E., Zeidler, C., Klimenkova, O., Klimiankou, M., Unalan, M., Kandabarau, S., Makaryan, V., Beekman, R., Behrens, K., Stocking, C., Obenauer, J., Schnittger, S., Kohlmann, A., Valkhof, M.G., Hoogenboezem, R., Gohring, G., Reinhardt, D., Schlegelberger, B., Stanulla, M., Vandenberghe, P., Donadieu, J., Zwaan, C.M., Touw, I.P., van den Heuvel-Eibrink, M.M., Dale, D.C. & Welte, K. Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 123, 2229-2237 (2014).
  • Klimenkova, O., Ellerbeck, W., Klimiankou, M., Unalan, M., Kandabarau, S., Gigina, A., Hussein, K., Zeidler, C., Welte, K. & Skokowa, J. A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation. Blood 123, 1239-1249 (2014).
  • Skokowa, J., Klimiankou, M., Klimenkova, O., Lan, D., Gupta, K., Hussein, K., Carrizosa, E., Kusnetsova, I., Li, Z., Sustmann, C., Ganser, A., Zeidler, C., Kreipe, H.H., Burkhardt, J., Grosschedl, R. & Welte, K. Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-triggered granulopoiesis. Nat Med 18, 1550-1559 (2012).
  • Skokowa, J., Lan, D., Thakur, B.K., Wang, F., Gupta, K., Cario, G., Brechlin, A.M., Schambach, A., Hinrichsen, L., Meyer, G., Gaestel, M., Stanulla, M., Tong, Q. & Welte, K. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med 15, 151-158 (2009).
  • Skokowa, J., Cario, G., Uenalan, M., Schambach, A, Germeshausen, M, Battmer, K., Zeidler, C., Lehmann, U., Eder, M., Baum, C., Grosschedl, R., Stanulla, M., Scherr, M., Welte, K.LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med.12, 1191-7 (2006).

Ongoing funding

Ongoing funding

A total of >10 million EUR funding. Ongoing:

  • Fortüne (PI, 117.840 €): Analysis of pre-leukemia stage in HAX1-associated severe congenital neutropenia using CRISPR/Cas9 gene-editing of patient-derived iPS cells.
  • X4 Pharma (PI, 166.451 €): The Activity of X4ßs Neutrophile elastase Inhibitors in Severe Congenital Neutropenia Models.
  • Medical Faculty of The Eberhard Karls Universität Tübingen - NWG (PI, 300.000 €): Identification of causative variants in patients with genetically unclassified severe congenital neutropenia using iPSCs and CRISPR/Cas9 gene-editing.
  • DFG (PI, 355.400 €): Ein Gen, zwei Phänotypen – die Pathomechanismen und Leukämientwicklung der kongenitalen und zyklischen Neutropenie verstehen.
  • DFG (430.365 €): De novo design of miniaturised G-CSFR agonists
  • DFG (371.150 €): Pathomechanisms of JAGN1-associated severe congenital neutropenia. 
  • Deutsche José Carreras Leukämie-Stiftung (PI, 124.200 €): In vivo tracing the clonal evolution of hematopoietic stem cells in severe congenital neutropenia after acquisition of SCF3R and RUNX1 mutations using barcoding.
  • BMBF (PI, 610.878 €): Optimierung der Betreuung junger Individuen mit Prädisposition für myeloische Neoplasie.
  • Deutsche Krebshilfe (488.774 €): Analysis of leukemogenic effects of ASXL1 and SETBP1 mutations on leukemia development in patients with severe congenital neutropenia using iPSC-based model
  • Marlene Schickedanz KinderKrebs Stiftung (750.000 €): Modeling tumorigenesis in zebrafish: The role of eh NAK salvage pathway and protein deacetylation in pediatric leukemia

Patents

Patents:

  • WO 2008034637 A1 Methods involving LEF-1 regulation and use of LEF-1 or compounds altering LEF-1 signalling for treating or preventing diseases (issued)
  • WO 2010086185 A1 Vitamin B3/Nampt treatment of neutropenia (issued)
  • EP19217185 Novel G-CSF mimics and their applications (pending)
  • EP5402P621 Method and composition of targeted gene knockout using CRISPR/Cas9 (pending)

Steering committee

Steering committee memberships:

Relevant registries and networks where Prof Skokowa serves as part of the steering committee:

  • Advisory Board of the Severe Chronic Neutropenia International Registry (Seattle, Hannover)
  • EuNet-INNOCHRON EU COST action coordinator 
  • Ba-Wü HemPred Board des ZPMs (Zentrum für Personalisierte Medizin)