Springe zum Hauptteil

Research

Our aim is to advance and translate methods and applications for processing and analysis of medical imaging data using artificial intelligence (AI) and machine learning (ML) methods.

We envision imaging applications and computing technology, that provide reliable, explainable and human-interpretable solutions, that enable the integration of AI solutions into clinical practice, and that provide patient-centered workflows for the comprehensive diagnosis and management of neurological, cardiovascular and oncological patients.


Research focuses

I. Developments for dynamic and multi-parametric MRI

The development of efficient acquisition strategies for multi-parametric and dynamic imaging is essential for non-invasive tissue and metabolism characterization. Imaging in conjunction with appropriate reconstruction techniques, the handling of motion and other sources of imaging artifacts can improve the obtained image quality. The aim is to provide an improved workflow with automatic generation of high resolution imaging data and to automatically derive clinical biomarkers that can be used in diagnosis.

2. Development of AI methods for medical imaging

The application of AI methods in acquisition, reconstruction, post-processing or analysis are investigated. The aim is to provide reliable, robust, specific and sensitive methods. The inclusion of AI into medical data processing can help to improve performance by (but not limited to) increasing precision, boosting quality of service, easing processing and reducing computational times. ML-based medical image analysis still suffers from limited robustness and generalizability to out-of-distribution data. Furthermore, In the context of large epidemiological studies, manual image analysis is often not feasible due to the overwhelming amount of data. The integration with non-imaging-data and expert knowledge can provide a better understanding of the causal generative process and can thus contribute to building ML models for medical imaging that capture the relevant information and allow for reliable predictions in a clinical setting.

3. Translation of AI to clinical applications

We aim to implement state-of-the-art AI methods for clinical applications to support the clinicians in their daily work. These projects enable automated processing, simplified workflows and patient-phenotypic processing and analysis. Imaging and non-imaging data are coherently processed to guide and monitor patients with neurological, cardiovascular and oncological diseases. One example use-case is the automatic analysis of whole-body imaging data such as PET-CT. In this context we launched an ML challenge: autoPET.

Reproducible research

We believe in the concept of open and reproducible research

Challenge

To promote research on machine learning-based automated tumor lesion segmentation on whole-body FDG-PET/CT data we host the autoPET challenge and provide a large, publicly available training data set:
autoPET
autoPET II

Documentation

A collection of codes and documentations of previous projects can also be found here:
k-space astronauts

Zertifikate und Verbände

Springe zum Hauptteil
Cookie Einstellungen
Bitte treffen Sie eine Auswahl um fortzufahren.
Weitere Informationen zu den Auswirkungen Ihrer Auswahl finden Sie unter Hilfe.
 
Um fortfahren zu können, müssen Sie eine Cookie-Auswahl treffen.

Cookies zulassen:
Wir setzen das Analysetool Google Analytics ein, um Besucher-Informationen wie z.B. Browser, Land, oder die Dauer, wie lange ein Benutzer auf unserer Seite verweilt, zu messen. Ihre IP-Adresse wird anonymisiert übertragen, die Verbindung zu Google ist verschlüsselt.

Nur notwendige Cookies zulassen:
Wir verzichten auf den Einsatz von Analysetools. Es werden jedoch technisch notwendige Cookies, die eine reibungslose Navigation und Nutzung der Webseite ermöglichen, gesetzt (beispielsweise den Zugang zum zugangsbeschränkten Bereich erlauben).

Sie können Ihre Cookie-Einstellung jederzeit auf der Seite Datenschutzerklärung ändern. Zum Impressum.

Zurück

Cookies zulassen Nur notwendige Cookies zulassen